You are currently viewing Sigma-1 receptors modulate neonatal Na1.5 ion channels in breast cancer cell lines.
A rolled newspaper - the left side facing forward. The name of the newspaper is "News" and the words "News" and "Events" are below that. The rubber band keeping the newspaper rolled together is thick and white. There is smaller writing on the newspaper which cannot be read.

Sigma-1 receptors modulate neonatal Na1.5 ion channels in breast cancer cell lines.

Abstract
The main aim of this study was to investigate a possible functional connection between sigma-1 receptors and voltage-gated sodium channels (VGSCs) in human breast cancer cells. The hypothesis was that sigma-1 drugs could alter the metastatic properties of breast cancer cells via the VGSC. Evidence was found for expression of sigma-1 receptor and neonatal Na1.5 (nNa1.5) expression in both MDA-MB-231 and MDA-MB-468 cells. Sigma-1 drugs (SKF10047 and dimethyltryptamine) did not affect cell proliferation or migration but significantly reduced adhesion to the substrate. Silencing sigma-1 receptor expression by siRNA similarly reduced the adhesion. Blocking nNa1.5 activity with a polyclonal antibody (NESOpAb) targeting an extracellular region of nNa1.5 also reduced the adhesion in both cell lines. Importantly, the results of combined treatments with NESOpAb and a sigma-1 drug or sigma-1 siRNA suggested that both treatments targeted the same mechanism. The possibility was tested, therefore, that the sigma-1 receptor and the nNa1.5 channel formed a physical, functional complex. This suggestion was supported by the results of co-immunoprecipitation experiments. Furthermore, application of sigma-1 drugs to the cells reduced the surface expression of nNa1.5 protein, which could explain how sigma-1 receptor activation could alter the metastatic behaviour of breast cancer cells. Overall, these results are consistent with the idea of a sigma-1 protein behaving like either a “chaperone” or a regulatory subunit associated with nNa1.5.