You are currently viewing Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer.
A rolled newspaper - the left side facing forward. The name of the newspaper is "News" and the words "News" and "Events" are below that. The rubber band keeping the newspaper rolled together is thick and white. There is smaller writing on the newspaper which cannot be read.

Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer.

Abstract
Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers.

We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium.
We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR) = 0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P = 6.5 × 10(-5)). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR = 0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P = 2.5 × 10(-7)), and positively associated with ovarian cancer (OR = 1.35; 95% CI: 1.05, 1.72; P = 0.017), lung cancer (OR = 1.27; 95% CI: 1.09, 1.49; P = 2.9 × 10(-3)) and colorectal cancer (OR = 1.39; 95% CI: 1.06, 1.82, P = 0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression.