You are currently viewing Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells.
A rolled newspaper - the left side facing forward. The name of the newspaper is "News" and the words "News" and "Events" are below that. The rubber band keeping the newspaper rolled together is thick and white. There is smaller writing on the newspaper which cannot be read.

Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells.

Abstract
Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells.

Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53.
KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65.